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Abstract. Unifying hierarchies of integrable equations are discussed. They are constructed
via the generalized Hirota identity. It is shown that the Combescure transformations, known
for a long time for the Darboux system and having a simple geometrical meaning, are in fact
the symmetry transformations of generalized integrable hierarchies, though the connection with
geometry in the general case is not clear. The generalized equation written in terms of invariants
of Combescure transformations are the usual integrable equations and their modified partners.
The KP–mKP, DS–mDS hierarchies and Darboux system are considered.

1. Introduction

The Sato approach (see e.g. [1–3]) and the∂̄-dressing method (see e.g. [4–7]) are two
powerful tools with which to construct and analyse the hierarchies of integrable equations. A
bridge between these seemingly different approaches has been established by the observation
that the Hirota bilinear identity can be derived from the∂̄-equation [7, 8]. An approach which
combines the characteristic features of both methods, namely, the Hirota bilinear identity
from the Sato approach and the analytic properties of solutions from the∂̄-dressing method,
has been discussed in [9–11].

A connection between wavefunctions with different normalizations was one of
interesting open problems of thē∂-dressing method. In [9] it was shown that such a
connection is given by the Combescure transformation.

The Combescure transformation was introduced during the last century within the study
of the transformation properties of surfaces (see e.g. [12, 13]). It is a transformation of the
surface such that all the tangent vectors at a given point of the surface remain parallel.
The Combescure transformation is essentially different from the well known Bäcklund and
Darboux transformations. The Combescure transformation plays an important role in the
theory of systems of hydrodynamical type [14]. It is also of great interest for the theory of
(2+ 1)-dimensional integrable systems [15].

The primary motivation of this work is to interpret the geometrical Combescure
transformation for the triply-conjugate systems of surfaces in three-dimensional space [12],
described by the scalar case of the integrable Darboux–Zakharov–Manakov (DZM) system
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[4], in the context of integrable systems (in the frame of the∂̄-dressing method, see
[9]). It appears that in this context the meaning of the Combescure transformation is
very transparent, and broad classes of integrable equations possess such a type of symmetry
transformation, though a geometrical sense of it in the general case is not clear. Nevertheless,
we call this type of symmetry transformationa Combescure transformation.

The main technical feature (which we believe is new) of our approach to integrable
hierarchies is the consistent use of the wavefunctionψ(λ,µ) with simple analytic properties
(the Cauchy–Baker–Akhiezer (CBA) function). We derive generalized integrable hierarchies
in terms of the functionψ(λ,µ), starting from the generalized Hirota bilinear identity for
this function. Such generalized hierarchies contain the usual integrable equations, their
modified partners and corresponding linear problems. The compact form of the generalized
equations is derived in terms of theτ -function. This approach provides us with a natural
framework with which to interpret the Combescure transformation for the DZM system and
to transfer the notion of the Combescure symmetry transformation to generalized hierarchies
of integrable equations.

It is shown that the generalized equations possess the symmetries given by the
Combescure transformations. The invariants of these symmetry transformations are found.
The generalized equations written in terms of these invariants coincide with the usual
equations or their modified versions. The Darboux transformation and its connection
with the Combescure transformation for the generalized hierarchies is also discussed. The
Kadomtsev–Petviashvili (KP) and modified KP (mKP) equations, the Davey–Stewartson
(DS) and modified Davey–Stewartson (mDS) equations and the matrix Darboux–Zakharov–
Manakov (DZM) system are considered.

It is interesting to note that in the case of the generalized KP–mKP hierarchy the
singularity manifold equationnaturally appears as an equation posessing a full Combescure
symmetry group. This equation first arose in a completely different context in the Painleve
analysis of the KP equation [16]. The invariant of this equation under the full Combescure
group is described by the KP equation, while the invariants under the action of its right
or left subgroups (see later) are described by the mKP or dual mKP equations. So in
our approach the KP hierarchy, the mKP hierarchy and the singularity manifold equation
hierarchy are united into thegeneralized KP hierarchy, while the connection between the
different levels of the hierarchy is described in terms of the invariants of the Combescure
symmetry transformations group. So the Combescure symmetry transformations group plays
a fundamental role in the structure of integrable hierarchies.

2. Generalized Hirota identity

As mentioned in section 1, the important feature of our approach is the consistent use of
the CBA function. We do not give a constructive definition of this function here, but it
is correctly defined in frame of thē∂-dressing method [9]; in the frame of the algebro-
geometric technique the functionψ(λ,µ) corresponds to Cauchy–Baker–Akhiezer kernel
on the Riemann surface (see [17]), so the equations obtained by our approach are consistent
(they possess a broad class of solutions). We believe that the notion of the CBA function can
be introduced to the Segal–Wilson Grassmannian approach [3] and to the Sato approach [1],
some hints in this direction can be found in [10] and [11]. In some sense the CBA function
is a special basic function generating two vector spaces corresponding to a Grassmannian
and dual Grassmannian point.

In the present work we introduce from the beginning the generalized Hirota bilinear
identity for the CBA function, and using this identity we derive generalized integrable
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hierarchies and their symmetry transformations. In fact every formula contained in this
work is derived from the generalized Hirota bilinear identity, so in this sense this work
is closed and self-consistent and requires no extra technique. Taking into account the
importance of this identity for our work, we treat it here in some detail (see also [11]).

Thus we start with the generalized Hirota bilinear identity∫
∂G

χ(ν, µ; g1)g1(ν)g
1
2(ν)χ(λ, ν; g2) dν = 0. (1)

Hereχ(λ, µ; g) is a matrix function of two complex variablesλ,µ ∈ G and a functional of
the group elementg defining the dynamics (which will be specified later),G is some set of
domains of the complex plane, the integration goes over the boundary ofG. By definition,
the functionχ(λ, µ) possesses the following analytical properties:

∂̄λχ(λ, µ) = 2π iδ(λ− µ) − ∂̄µχ(λ, µ) = 2π iδ(λ− µ)
whereδ(λ−µ) is a δ-function, or, in other words,χ → (λ−µ)−1 asλ→ µ andχ(λ, µ)
is an analytic function of both variablesλ, µ for λ 6= µ.

The formula (1) is a basic tool of our construction.
We suggest in what follows that we are able to find solutions to it somehow; we treat

different constructive methods as methods with which to find solutions to the generalized
Hirota bilinear identity.

In fact some special solutions (determinant solutions and degenerate solutions) to this
identity can be found directly, without any additional construction (the CBA function for
g = 1 plays the role of the initial data).

In another form, more similar to the standard Hirota bilinear identity, the identity (1)
can be written as∫

∂G

ψ(ν, µ; g1)ψ(λ, ν; g2) dν = 0 (2)

where

ψ(λ,µ; g) = g1(µ)χ(λ, µ; g)g(λ). (3)

We call the functionψ(λ,µ; g) a Cauchy–Baker–Akhiezer (CBA) function.
Let us consider two linear spacesW(g) and W̃ (g) defined by the functionχ(λ, µ)

(satisfying (1)) via equations connected with the identity (1)∫
∂G

f (ν; g)χ(λ, ν; g) dν = 0 (4)∫
∂G

χ(ν, µ; g)h(ν; g) dν = 0 (5)

heref (λ) ∈ W , h(λ) ∈ W̃ ; f (λ), h(λ) are defined inḠ.
It follows from the definition of linear spacesW , W̃ that

f (λ) = −2π i
∫ ∫

G

η(ν)χ(λ, ν)dν ∧ dν̄ η(ν) =
(
∂

∂ν̄
f (ν)

)
h(µ) = 2π i

∫ ∫
G

χ(ν, µ)η̃(ν) dν ∧ dν̄ η̃(ν) =
(
∂

∂ν̄
h(ν)

)
.

(6)

These formulae in some sense provide an expansion of the functionsf , h in terms of
the basic functionχ(λ, µ). The formulae (6) readily imply that linear spacesW , W̃ are
transversal to the space of holomorphic functions inG (transversality property).
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From the other point of view, these formulae define a map of the space of functions
(distributions) onḠ η, η̃ to the spacesW , W̃ . We will call η (η̃) a normalizationof the
corresponding function belonging toW (W̃ ).

The dynamics of the linear spacesW , W̃ looks very simple

W(g) = W0g
−1 W̃ (g) = gW̃0. (7)

HereW0 = W(g = 1), W̃0 = W̃ (g = 1) (the formulae (7) follow from the identity (1) and
the formulae (6)).

A dependence of the functionχ(λ, µ) on dynamical variables is hidden in the function
g(λ). We will consider here only the case of continuous variables, for which

gi = exp(Kixi)
∂

∂xi
gi = Kigi. (8)

HereKi(λ) are commuting matrix meromorphic functions.
To introduce a dependence on several variables (which may be of different type), one

should consider a product of corresponding functionsgi(λ) (all of them commute).
Let G be a unit disc andxν a variable corresponding toKν(λ) = Aν/(λ − ν).

Differentiating the identity (1) overxν , one obtains
Aν

λ− ν
∂

∂xν
χ(λ, µ, xν)− ∂

∂xν
χ(λ, µ, xν)

Aν

µ− ν = χ(ν, µ)Aνχ(λ, ν)
or, in terms of theψ function (3),

∂

∂xν
ψ(λ, µ, xν) = ψ(ν, µ, xν)Aνψ(λ, ν, xν). (9)

This formula allows one to construct the basic functionχ(λ, µ) using only two functions
with ‘canonical’ normalization, the Baker–Akhiezer functionψ(λ, ν, xν) and the dual
Baker–Akhiezer functionψ(ν, µ, xν) corresponding to some fixed pointν.

3. The matrix DZM system

The matrix DZM system is our first example. In this case the construction and all formulae
are very simple and transparent.

To derive the DZM system of equations, we take a set of three identical unit discs with
the centre atλ = 0Di , 16 i 6 3, asG, and we denote the zero point of the corresponding
disc as 0i . The functionsKi(λ), 16 i 6 3, are chosen in the form

Ki(λ) = Ai

λ
(λ ∈Di )

Ki(λ) = 0 (λ /∈Di )

whereAi , Aj , Ak are commuting matrices.
It appears that the Hirota bilinear identity in differential form (9) contains enough

information to derive equations for the rotation coefficients, DZM equations and the linear
problem for the DZM equations. Indeed, evaluating the set of three relations (9) for
independent variablesxi , xj , xk, i 6= j 6= k 6= i, at the set of pointsλ,µ ∈ {0i , 0j , 0k},
where, according to our notations, 0i is the zero point of the discDi one easily obtains the
relations

∂iψ(λ, µ,x) = ψ(0i , µ,x)Aiψ(λ, 0i ,x)

∂iψ(λ, 0j ,x) = ψ(0i , 0j ,x)Aiψ(λ, 0i ,x)

∂iψ(0j , µ,x) = ψ(0i , µ,x)Aiψ(0i , 0j ,x)

∂iψ(0j , 0k,x) = ψ(0j , 0i ,x)Aiψ(0i , 0k,x)
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where∂i = ∂/∂xi , x is the setxi, xj , xk.
Let us now take into account that all the equations containingλ, µ, can be integrated

over the boundary ofG with some matrix weight functionsρ(λ), ρ̃(µ) (note that they are
connected with the normalization functions defined by (6)) without changing the structure
of equations. So we will write the equations in terms ofwavefunctionsindependent of
spectral parameters

∂i8(x) = f̃i(x)fi(x) (10)

∂ifj (x) = βjifi(x) (11)

∂i f̃j (x) = f̃i(x)βij(x) (12)

∂iβjk(x) = βji(x)βik(x). (13)

Here

8(x) =
∫ ∫

ρ̃(µ)ψ(λ, µ,x)ρ(λ) dλ dµ

fi(x) = (Ai) 1
2

∫
ψ(λ, 0i ,x)ρ(λ) dλ

f̃i(x) =
∫
ρ̃(µ)ψ(0i , µ,x)(Ai)

1
2 dµ

βij (x) = (Aj ) 1
2ψ(0j , 0i ,x)(Ai)

1
2 . (14)

The system of equations (10)–(13) implies that

∂i∂j f̃k(x) = ((∂j f̃i(x))f̃i(x)−1
)∂i f̃k(x)+ ((∂i f̃j (x))f̃j (x)−1

)∂j f̃k(x) (15)

∂i∂j8(x) = ((∂j f̃i(x))f̃i(x)−1
)∂i8(x)+ ((∂i f̃j (x))f̃j (x)−1

)∂j8(x) (16)

and

∂i∂jfk(x) = (∂ifk(x))(fi(x)1∂jfi(x))+ (∂jfk(x))(fj (x)1∂ifj (x)) (17)

∂i∂j8(x) = ∂i8(x)fi(x)−1(∂jfi(x))+ ∂j8(x)fj (x)−1(∂ifj (x)). (18)

The system (15) is just the matrix DZM equation derived in [4]. The system (17) is its dual
partner. So the solution for the DZM equations is, in fact, given by thedual wavefunctions,
i.e. the wavefunctions for the linear equations (12), while the compatibility conditions for
these equations give the equations for rotation coefficients (13). Solutions of the dual DZM
system are given by the wavefunctions for the linear system (11).

One always has a freedom to choose the dual wavefunction (or, in other words, the
freedom to choose the weight functionρ̃(λ)), keeping the rotation coefficients invariant. This
freedom is described by the Combescure symmetry transformation between the solutions of
the DZM system of equations

(f̃ ′i (x))
−1∂i f̃

′
j (x) = f̃i(x)−1∂i f̃j (x). (19)

The equations (19) just literally reflect the invariance of the rotation coefficients.
Similarly for the dual DZM system

(∂if
′
j (x))(f

′
i (x))

−1 = (∂ifj (x))fi(x)−1. (20)

In fact, the function8 is a wavefunction for two linear problems (with different
potentials), corresponding to the DZM system and the dual DZM system. A general
Combescure transformation changes solutions for both the original system and the dual
system (i.e. both functionsρ(λ), ρ̃(µ)). It is also possible to consider twospecialsubgroups
of the Combescure symmetry transformations group. These two subgroups correspond to
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the change of only one weight function,ρ(λ) or ρ̃(µ); we will call transformations of
this type right- or left-Combescure transformations, respectively. The invariants for the
right (left) Combescure transformations are the solutions of the dual (or the original) DZM
system. Another form of these invariants is

(f̃ ′i (x))
−1∂i8

′(x) = f̃i(x)−1∂i8(x) (21)

(∂i8
′(x))(f ′i (x))

−1 = (∂i8(x))fi(x)1. (22)

These equations are important for the connection with the hydrodynamical-type systems
[14].

4. The KP–mKP hierarchy

The KP–mKP hierarchy is generated by

g(x, λ) = exp

( ∞∑
i=1

xiλ
i

)
(23)

wherex is the set of all the variablesxi , 16 i <∞. G is a unit disc in this case. Let us
take

g1g
−1
2 = exp

( ∞∑
i=1

(xi − x ′i )λ−i
)
= exp

(
−
∞∑
i=1

εi

iλi

)
=
(

1− ε
λ

)
.

Substituting this function in the Hirota bilinear identity (1), we get(
1− ε

µ

)
χ(λ, µ,x′)−

(
1− ε

λ

)
χ(λ, µ,x) = εχ(λ, 0,x′)χ(0, µ,x)

x ′i − xi =
1

i
εi (24)

or, in terms of the functionψ(λ,µ)

ψ(λ, µ,x′)− ψ(λ,µ,x) = εψ(λ, 0,x′)ψ(0, µ,x) x ′i − xi =
1

i
εi . (25)

This equation is a finite form of the whole KP–mKP hierarchy. Indeed, the expansion of
this relation overε generates the KP–mKP hierarchies (and dual hierarchies) and linear
problems for them.

Let us take the first three equations given by the expansion of (25) overε

ε : ψ(λ,µ,x)x = ψ(λ, 0,x)ψ(0, µ,x) (26)

ε2 : ψ(λ,µ,x)y = ψ(λ, 0,x)xψ(0, µ,x)ψ(λ, 0,x)ψ(0, µ,x)x (27)

ε3 : ψ(λ,µ,x)t = 1
4ψ(λ,µ,x)xxx − 3

4ψ(λ, 0,x)xψ(0, µ,x)x

+ 3
4(ψ(λ, 0,x)yψ(0, µ,x)− ψ(λ, 0,x)ψ(0, µ,x)y) (28)

x = x1 y = x2 t = x3.

In the orderε2 the equation (25) gives rise equivalently to the equations

ψ(λ,µ,x)y − ψ(λ,µ,x)xx = 2ψ(λ, 0,x)ψ(0, µ,x)x (29)

ψ(λ,µ,x)y + ψ(λ,µ,x)xx = 2ψ(λ, 0,x)xψ(0, µ,x). (30)

Evaluating the first equation atµ = 0, the second atλ = 0 and integrating them with the
weight functionsρ(λ) (ρ̃(µ)), one gets (see (14))

f (x)y − f (x)xx = u(x)f (x) (31)

f̃ (x)y + f̃ (x)xx = u(x)f̃ (x) (32)
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whereu(x) = −2ψ(0, 0,x)x .
In a similar manner, one obtains from (26)–(28) the equations

ft − fxxx = 3
2ufx + 3

4(ux + ∂−1
x uy)f (33)

f̃t − f̃xxx = 3
2uf̃x + 3

4(ux − ∂−1
x uy)f̃ . (34)

Both the linear system (31), (33) for the wavefunctionf and the linear system (32), (34)
for the wavefunctionf̃ give rise to the same KP equation

ut = 1
4uxxx + 3

2uux + 3
4∂
−1
x uyy. (35)

To derive linear problems for the mKP and dual mKP equations, we will integrate
equations (26), (29), (30) and (28) with two weight functionsρ(λ), ρ̃(µ) (see (14))

8(x)x = f (x)f̃ (x) (36)

8(x)y −8(x)xx = −2f (x)f̃ (x)x (37)

8(x)y +8(x)xx = 2f (x)xf̃ (x) (38)

8(x)t −8(x)xxx = − 3
2f (x)xf̃ (x)x − 3

4(f (x)f̃ (x)y − f (x)yf̃ (x)). (39)

Using the first equation to excludef from the second (and̃f from the third), we obtain

8(x)y −8(x)xx = v(x)8(x)x (40)

8(x)y +8(x)xx = −ṽ(x)8(x)x (41)

wherev = −2f̃ (x)x/f̃ (x), ṽ = 2f (x)x/f (x).
Similarly, one gets from (28)

8(x)t −8(x)xxx = 3
2v(x)8(x)xx + 3

4(vx + v2+ ∂−1
x vy)8x (42)

8(x)t −8(x)xxx = 3
2 ṽ(x)8(x)xx + 3

4(ṽx + v2− ∂−1
x ṽy)8x. (43)

The system (40) and (42) gives rise to the mKP equation

vt = vxxx + 3
4v

2vx + 3vx∂
1
x vy + 3∂−1

x vyy (44)

while the system (41) and (43) leads to the dual mKP equation, which is obtained from (44)
by the substitutionv→ ṽ, t →−t , y →−y, x →−x.

So the function8 is simultaneously a wavefunction for the mKP and dual mKP
L-operators with different potentials, defined by the dual KP (KP) wavefunctions.

Using equation (28) and relations (40) and (41), it is possible to obtain an equation for
the function8(x)

8t − 1

4
8xxx − 3

8

82
y −82

xx

8x

+ 3

4
8xWy = 0 Wx = 8y

8x

. (45)

This equation first arose in Painleve analysis of the KP equation as a singularity manifold
equation [16].

The higher analogues of equations (26)–(28) provide us, with the use of relations (40)
and (41), with the higher analogues of equation (45). The compact form of the hierarchy of
equations for8 can be obtained from the basic finite relation (25). Integrating both parts
of equation (25) with the weightsρ(λ) and ρ̃(µ), one gets

8(x′)−8(x)− εf (x′)f̃ (x) = 0. (46)

Differentiating (46) with respect tox1, dividing the result byf (x′)f̃ (x) and using (40) and
(41), one gets

8x ′(x
′)−8x(x)

8(x′)−8(x) = −
8y ′(x

′)+8x ′x ′(x
′)

28x ′(x′)
− 8y(x)8xx(x)

28x(x)
. (47)
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This equation is a compact form of thesingularity manifold equation hierarchy.
It is also possible to obtain the finite form of the KP hierarchy in terms of theτ -

function, though we do not develop a consistent approach to theτ -function in this work;
we are planning to do it later. All we need here is the formula connecting theτ -function
and the CBA function (it can be found in [11, 17]). In fact, after some technical work, this
formula provides us with thedefinitionof theτ -function through the CBA function in terms
of the closed 1-form, but this result goes beyond the scope of this paper. Our goal here
is just to demonstrate that the equations for theτ -function arise from the equations for the
CBA function in a very simple and straightforward way. The equations for theτ -functions
obtained below are not new, they exactly coincide with the equations given by the Sato
approach, but we believe that the derivation of these equations is new and instructive.

Substituting the expression of the functionχ(λ, µ) through theτ -function

χ(λ, µ) = τ(g(ν)× ((ν − λ)/(ν − µ)))
τ (g(ν))(λ− µ) (48)

(see e.g. [11, 17]; theτ -function is a functional of the functiong(ν) or, in other words, a
function ofx) into equation (24), one gets

λ(µ− ε)τ (x(5))τ (x(0))+ µ(ε − λ)τ(x(4))τ (x(1))+ ε(λ− µ)τ(x(3))τ (x(2)) = 0 (49)

x
(5)
i − x(4)i = x(1)i − x(0)i =

1

i
εi

x
(3)
i − x(1)i = x(4)i − x(2)i = −

1

i
λi

x
(5)
i − x(3)i = x(2)i − x(0)i =

1

i
µi.

The expansion of (49) inε, λ, µ gives the KP hierarchy in the form of Hirota bilinear
equations.

Equation (49) is equivalent to that of the addition formulae for theτ -function found in
[1].

5. Combescure transformations for the KP–mKP hierarchy

Let us now consider the symmetries of the equations derived above.
Since ρ(λ) and ρ̃(µ) are arbitrary functions, equation (45) and the hierarchy (47)

possess the symmetry transformation8(ρ(λ), ρ̃(µ)) → 8′ = 8(ρ ′(λ), ρ̃ ′(µ)). In the
context of integrable systems this is exactly the transformation that gives rise to the
geometrical Combescure transformation for the DZM system, so we call this transformation
a Combescure symmetry transformation, in this case without any reference to geometry.

The Combescure transformation can be characterized in terms of the corresponding
invariants. The simplest of these invariants for the mKP equation is just the potential of the
KP equation L-operator expressed through the wavefunction

u = f (x)y − f (x)xx
f (x)

(50)

u = f̃ (x)y − f̃ (x)xx
f̃ (x)

(51)

or, in terms of the solution for the mKP (dual mKP) equation

v′y + v′xx − 1
2((v

′)2)x = vy + vxx − 1
2(v

2)x (52)

ṽ′y − ṽ′xx − 1
2((ṽ

′)2)x = ṽy − ṽxx − 1
2(ṽ

2)x. (53)
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The solutions of the mKP equations are transformed only by a subgroup of the Combescure
symmetry group corresponding to the change of the weight functionρ̃(µ) (left subgroup)
and they are invariant under the action of the subgroup corresponding toρ(λ) (vice versa
for the dual mKP).

All the hierarchy of the Combescure transformation invariants is given by the expansion
over ε near the pointx of the relation (25) rewritten in the form

∂

∂ε

(
f̃ (x′)− f̃ (x)

εf̃ (x)

)
= −1

2

∂

∂ε
∂−1
x ′ u(x

′) x ′i − xi =
1

i
εi (54)

∂

∂ε

(
f (x)− f (x′)

εf (x)

)
= 1

2

∂

∂ε
∂−1
x ′ u(x

′) x ′i − xi = −
1

i
εi . (55)

The expansion of the left part of these relations gives the Combescure transformation
invariants in terms of the wavefunctions̃f , f . To express them in terms of mKP equation
(dual mKP equation) solution, one should use the formulae

v = −2
f̃x

f̃
f̃ = exp

(
−1

2
∂1
x v

)
(56)

ṽ = 2
fx

f
f = exp

(
1

2
∂−1
x ṽ

)
. (57)

It is also possible to consider special Combescure transformations keeping invariant the
KP equation (dual KP equation) wavefunctions (i.e. solutions for the dual mKP (mKP)
equations). The first invariants of this type are

8′x(x)

f̃ ′(x)
= 8x(x)

f̃ (x)
(58)

8′x(x)
f ′(x)

= 8x(x)

f (x)
. (59)

All the hierarchy of the invariants of this type is generated by the expansion of the left part
of the following relations overε(

8(x′)−8(x)
f̃ (x)

)
= εf (x′) x ′i − xi =

1

i
εi (60)(

8(x)−8(x′)
f (x)

)
= εf̃ (x′) x ′i − xi = −

1

i
εi . (61)

Now let us consider equation (45) and all the hierarchy given by the relation (47). This
equation admits the Combescure group of symmetry transformations8(ρ(λ), ρ̃(µ)) →
8′ = 8(ρ ′(λ), ρ̃ ′(µ)) consisting of two subgroups (right and left Combescure
transformations). These subgroups have the following invariants

v = 8y −8xx

8x

(62)

and

ṽ = 8y +8xx

8x

. (63)

From (40) and (41) it follows that they just obey the mKP and dual mKP equations,
respectively. The invariant for the full Combescure transformation can be obtained by
the substitution of the expression forv via 8 (62) to the formula (52). It reads

u = ∂1
x

(
8y

8x

)
y

− 8xxx

8x

+ 8
2
xx −82

y

282
x

. (64)



1600 L V Bogdanov and B G Konopelchenko

From (31), (32) and (50)–(53) it follows thatu solves the KP equation.
So there is an interesting connection between equation (45), mKP–dual-mKP equations

and the KP equation. Equation (45) is the unifying equation. It possesses a Combescure
symmetry transformations group. After the factorization of equation (45) with respect to
one of the subgroups (right or left), one gets the mKP or dual-mKP equation in terms of the
invariants for the subgroup (62) and (63). The factorization of equation (45) with respect
to the full Combescure transformations group gives rise to the KP equation in terms of the
invariant of group (64).

In other words, the invariant of equation (45) under the full Combescure group is
described by the KP equation, while the invariants under the action of its right and left
subgroups are described by the mKP or dual-mKP equations.

Thus the generalized hierarchy (47) plays a central role in the theory of the KP and
mKP hierarchies.

Using the results of the paper [11], it is possible to get the formulae for the Darboux-type
transformation for (45) in terms of its special solutionψ(λ,µ). Indeed, a Darboux-type
transformation corresponds to

gd = ν − b
ν − a a, b ∈D (65)

(in fact a, b may also belong to regions not connected withD, this case requires some
additional definitions). The action ofgd (65) on the functionχ(λ, µ; g) is given by the
formula (see [11])

χ(λ, µ; g × gd) = g−1
d (λ)gd(µ)

det

(
χ(λ, µ; g) χ(λ, a; g)
χ(b, µ; g) χ(b, a; g)

)
χ(b, a; g) . (66)

In terms of the functionψ(λ,µ) we get

ψ(λ,µ; g × gd) = g−1
d (λ)gd(µ)g(λ)g

−1(µ)

×
det

(
g−1(λ)ψ(λ, µ; g)g(µ) g−1(λ)ψ(λ, a; g)g(a)
g−1(b)ψ(b, µ; g)g(µ) g−1(b)ψ(b, a; g)g(a)

)
g−1(b)ψ(b, a; g)g(a) (67)

whereg is given by (23)

g(x, λ) = exp

( ∞∑
i=1

xiλ
i

)
.

The formula (67) determines a Darboux-type transformation for equation (45) in terms of
the functionψ(λ,µ). We note that the functionsψ(λ, a; g), ψ(b, µ; g) and ψ(b, a; g)
are connected with the functionψ(λ,µ; g) by the Combescure transformation(left, right
and their combination). So formula (67) demonstrates an intriguing connection between the
Darboux and the Combescure transformations for equation (45).

6. Davey–Stewartson—modified Davey–Stewartson hierarchy. The Ishimori equation

Now we will consider the two-component extension of the KP–mKP hierarchy. We take
a set of two identical unit discs with the centre atλ = 0 D+, D− asG. The functions
K+(λ), K−(λ) are chosen in the form

K+(λ) = λ−1 (λ ∈D+) K−(λ) = λ−1 (λ ∈D−)
K+(λ) = 0 (λ ∈D−) K−(λ) = 0 (λ ∈D+).
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The DS–mDS hierarchy is generated by

g(x, λ) = exp

( ∞∑
i=1

(x+i K
i
+ + x−i Ki

−)
)
.

Let us take

g1g
−1
2 = exp

( ∞∑
i=1

(
εi+
i
Ki
+ +

εi−
i
Ki
−

))
= (1− ε+K+)(1− ε−K−).

Substituting this function to the Hirota bilinear identity (1), we get

ψ(λ,µ,x′)− ψ(λ,µ,x) = ε+ψ(λ, 0+,x′)ψ(0+, µ,x)+ ε−ψ(λ, 0−,x′)ψ(0−, µ,x) (68)

(x+i )
′ − x+i =

1

i
εi+ (x−i )

′ − x−i =
1

i
εi−.

The expansion of this relation overε+, ε− generates the DS–mDS hierarchies (and dual
hierarchies) and linear problems for them.

The DS equation in the usual form is written in terms of the variablesξ = 1
2(x+y) = x+1 ,

η = 1
2(y−x) = x−1 , t = − 1

2i(x+2 −x−2 ). The DS hierarchy in the form (69) also incorporates
the modified Veselov–Novikov hierarchy.

In the standard DS coordinates one gets from (69)

ψ(λ,µ,x)ξ = ψ(λ, 0+,x)ψ(0+, µ,x) (69)

ψ(λ,µ,x)η = ψ(λ, 0−,x)ψ(0−, µ,x) (70)

iψ(λ,µ,x)t = 1
2(ψ(λ, 0+,x)ξψ(0+, µ,x)− ψ(λ, 0+,x)ψ(0+, µ,x)ξ
−ψ(λ, 0−,x)ηψ(0−, µ,x)+ ψ(λ, 0−,x)ψ(0−, µ,x)η). (71)

Just as in the DZM system case, from (69) and (70) one obtains the DS and dual DS spatial
linear problems

∂ηf− = uf+ ∂ηf̃− = vf̃+
∂ξf+ = vf− ∂ξ f̃+ = uf̃−. (72)

Herev = ψ(0−, 0+), u = ψ(0+, 0−).
Similarly to the KP equation case, (71) gives a time linear problem for the DS equation

if+t − 1
2f+ξξ + 1

2f+ηη = (∂−1
η (uv)ξ )f+ − vηf−

if−t − 1
2f−ξξ + 1

2f+ηη = −(∂−1
ξ (uv)η)f− + uξf+. (73)

The compatibility condition for (72) and (73) gives the DS equation (in fact it is even easier
to obtain it directly from (69)–(71))

ivt − 1
2vξξ − 1

2vηη = −((∂−1
ξ (uv)η)+ (∂−1

η (uv)ξ ))v

iut + 1
2uξξ + 1

2uηη = ((∂−1
η (uv)ξ )+ (∂−1

ξ (uv)η))u. (74)

The spatial and time linear problems for the mDS–dual mDS case read

8ηξ = Uξ8η + Vη8ξ (75)

i8t + 1
28ηη − 1

28ξξ = Vη8η − Uξ8ξ (76)

and

8ξη = Ũξ8η + Ṽη8ξ (77)

i8t − 1
28ηη + 1

28ξξ = −Ṽη8η + Ũξ8ξ . (78)
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HereV = log f̃+, U = log f̃−, Ṽ = logf+, Ũ = logf−. The compatibility condition for
(75) and (76) gives the equations [18](

iUt − 1
2Uξξ − 1

2Uηη − 1
2U

2
ξ − 1

2U
2
η + UηVη

)
η
+ (UηVξ )ξ = 0(

iVt + 1
2Vξξ + 1

2Vηη − 1
2V

2
ξ − 1

2V
2
η + UξVξ

)
ξ
+ (UηVξ )η = 0 (79)

which can be treated as the modified DS equation. This system and its connection with the
DS equation has been analysed in [18]. The dual modified DS equation can be obtained
from (79) by the substitutionV → Ṽ , U → Ũ , t →−t , ξ →−ξ , η→−η.

Solutions for this system are given in terms of dual DS wavefunctions (DS
wavefunctions). Thus there is a Combescure transformations group acting on the space
of solutions. The simplest Combescure invariants are

∂ηf̃−
f̃+
= Vη exp(V − U) (80)

∂ξ f̃+
f̃−
= Uξ exp(U − V ). (81)

The hierarchy of the Combescure transformation invariants is generated by the relations(
f̃+(x′)− f̃+(x)

f̃−(x)

)
= ε+u(x′) (82)

(x+i )
′ − x+i =

1

i
εi+ x−i − (x−i )′ = 0(

f̃−(x′)− f̃−(x)
f̃+(x)

)
= ε−v(x′) (83)

(x−i )
′ − x−i =

1

i
εi− (x+i )

′ − x+i = 0.

If one takes a pair of wavefunctions̃f+, f̃− and f̃ ′+, f̃
′
−, the matrix

9 =
(
f̃+ f̃ ′+
f̃− f̃ ′−

)
is connected with the solution of the Ishimori equation by the formula (see e.g. [18])

S1σ1+ S2σ2+ S3σ3 = −91σ39

(for realS some reduction conditions should be satisfied). In principle it could be possible
to express Combescure invariants for mDS equation in terms of solution for the Ishimori
equation and thus obtain Combescure invariants for the Ishimori equation, but it is unclear
in this case whether the Combescure transformation survives under reduction conditions.
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